

EVC300i

Generator Automatic Voltage Regulator Operation Manual

1. INTRODUCTION

The EVC300i Voltage Regulator is thyristor base to control the DC exciter field power of conventional 50 or 60 Hz brushless generators. The AVR circuitry includes under speed and over load protection features. Excitation power is derived directly from the generator terminals.

2. ENVIRONMENTAL

2.1. Operating temperature: -30 to 80°C (-22 to 176 F)

2.2. Storage temperature: -40 to 80°C (-40 to 176 F)

2.3. ALTITUDE: Less than 2800 meter

2.4. RELATIVE HUMIDITY: <90%

3. TECHNOLOGY SPECIFICATION

Sensing Input

Terminal V - V_{220} for 220 Vac Terminal V - V_{380} for 400 Vac

Power Input

Voltage: 180 to 250 Vac Frequency: 50 Hz or 60 Hz

Voltage Adjust Range

180 - 300 Vac, 300 - 520 Vac

Field Resistance

Recommend 9 - 24 O

Voltage Regulation

<± 1%

Output Voltage

Maximum 90 Vdc @ 240 Vac

Output Current

Maximum continuous: 6.3 A @ 240 Vac 10 second forcing: 10 A @ 240 Vac

Paralleling

Internal burden and adjustment for 0 to 10% droop at 1 A, 0.8 PF, (from external CT)

Voltage Buildup

4Vac, 30 Hz

External Volts Adjustment

At least ± 10% with 100k ohm 1 watt trimmer

Thermal Drift

0.05% per 'C' change in AVR ambient

Analog Voltage Input

±5VDC, adjustable output voltage is no less than 2% for 1VDC (i.e. for ±5VDC it come out to be ±10%)

Current Compensation

In: 1A Input

Not Less than 10 % @ P.F. = 0.8

Dimensions

122 mm L x 93 mm W x 38 mm H

Weight

 $300 \pm 10g$

Updated on 02 Feb2015

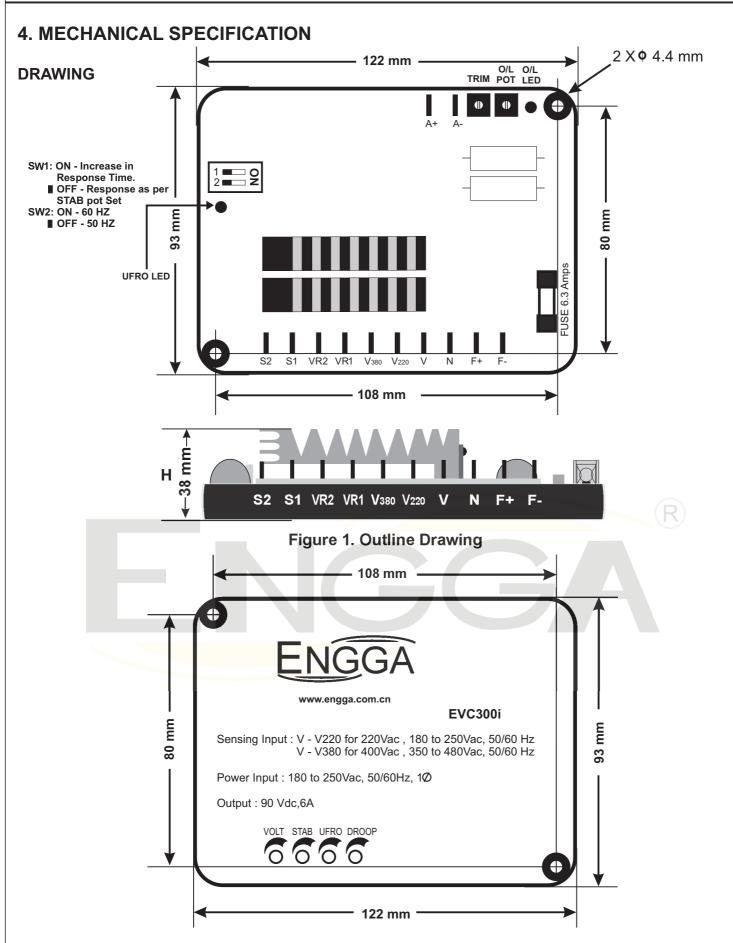


Figure 2. The Drawing For Trimmer

AVR can be mounted directly on the generator, switchgear or control panel that conforms to the mounting specification.

All voltage readings are to be taken with an average-reading voltmeter. Meggers and high-potential test equipment must not be used with AVR connected to generator. Use of such equipment could damage the AVR.

5. WIRING

- 1. V V₂₂₀ V₃₈₀: Sensing Input Voltage. Sensing Input is between V & V220 (220Vac) or V &V₃₈₀ (400VAC). For 2 Phase sensing one phase is connected to V terminal of AVR and second phase is connected to V220 or V380 as explained below:-
- For generator output voltage 220Vac, connect sensing phase to terminal V220.
- For generator output voltage 400Vac, connect sensing phase to terminal V₃₈₀.

The sensing should be connected "Line to Line" from generator output. Refer Figure 3 & 4.

2. F+. F-: Excitation Output.

Connect the brushless exciter field to terminals F+ and F-. Be sure to observe polarity.

- 3. Power Input: AVR power input is between N & V. For 400 Vac system N is connected to Neutral of generator & V to V Phase of generator. For 220 Vac system, N is connected to U Phase & V to V Phase of generator. Refer to Figure 3 & 4
- 4. S1 S2: Current compensation input. Current Transformer(CT) secondary current = 1A, 0.8 PF.

5. VR1 - VR2: External Voltage Adjustment. If an external voltage adjust control is being used, connect a 100 K / 1 watt potentiometer to terminals VR1 and VR2 as shown in Figure 3 & 4. If not in use then let VR1 & VR2 is left open.

6. A+ & A-: Analog Voltage Input.

Fully isolated analog voltage from PF controller or any other type of Digital (PLC) controller can be injected into AVR for variation of generator output voltage. Analog voltage range is ± 5VDC maximum and can be connected to A+ & A- terminals for at least 10 % variation in terminal voltage.

7. DIP SWITCH:

- a) SW1 ON: When 60Hz operation, AVR response time needs to be reduced. For that turn ON Switch1 so that extra fixed response time is now added with STAB POT setting such that no over or under shoot of voltage occurs during loading-unloading of generator at 60Hz.
- SW1 OFF: When 50Hz operation, no need to decrease response time as STAB POT setting is proper for optimum stability of generator with minimum over-under shoot of Voltage during loading - unloading of generator.
- b) SW2 ON: For 60 Hz operation of UFRO SW2 - OFF: For 50 Hz operation of UFRO

6. ADJUSTMENT

All trimmer build in back of the AVR board, except the O/L and TRIM Trimmer. The trimmers include DROOP, UFRO, STAB and VOLT as shown in Figure 2. For **O/L** Trimmer and **TRIM** Trimmer refer d) Start the generator set and run on no load at to Figure 1.

1. VOLT: Voltage Adjustment.

The generator output can be altered by adjustment of the **VOLT** trimmer on the AVR board, or by the external trimmer (100K ohm 1W) if fitted. Vset is factory set for 400 Vac . If Vset is disturbed and set value is not known then proceed as below:

a) The terminals VR1 and VR2 must be left unconnected if no hand trimmer is required.

- b) Before starting the generator, please turn the **VOLT** trimmer on the AVR board fully anticlockwise.
- c) Connect a voltmeter to generator output voltage terminals.
- nominal frequency 50 53 Hz or 60 63 Hz.
- e) If the red Led is illuminated, refer to the under frequency roll off adjustment.
- f) Carefully turn volt trimmer clockwise until rated voltage is reached.

2. STAB: Stability Adjustment.

Stability Pot is factory set for optimum performance & is advisable not to disturb. But if required then with the generator in ON Condition, rotate STAB POT clockwise direction till voltage start oscillating fast.

Updated on 02 Feb2015

From this position, rotate STAB POT anticlockwise direction till voltage is stable. Load the generator and check for stable voltage and if not then rotate more towards anticlockwise till voltage is stable.

3. UFRO: Frequency Roll-Off Adjustment.

The EVC300i under frequency adjust is factory preset to cause voltage drop in the generator line voltage when the frequency is between 56.8 and 57.2 Hz for 60 Hz applications. For 50 Hz applications, the frequency roll-off is factory preset to between 46.8 and 47.2 Hz.

To reset the frequency roll-off, proceed as follows: a. Adjust the prime mover RPM to the desired frequency compensation (corner frequency roll-off) point.

b. If UFRO LED is ON adjust the back panel **UFRO** trimmer anticlock wise to just OFF the LED If UFRO LED is OFF then adjust UFRO trimmer clockwise to turn ON LED and then anticlockwise to just turn it OFF.

c. Bring the prime mover up to rated speed. The output voltage should return to set level.

4. DROOP: Droop Adjustment.

Generator intended for parallel are fitted with a quadrature droop CT which provides a power factor dependent signal for the AVR. The CT connected to **S1** and **S2** of AVR. CT with secondary N:1A is required to provide minimum 10% droop at 0.8 PF. Percentage of droop required can be adjusted using DROOP POT in the range of 0 to 10%. Fully anticlockwise is 0% and fully clockwise is maximum as per CT current and load power factory. Factory set is 0% so that mostly during solo operation there is no droop in terminal voltage.

5. TRIM: Analog Voltage Input Adjustment.

Trim Pot is used to decrease the effect of analog input voltage on generator output voltage. When set fully anticlockwise, there is no variation in generator voltage on application of DC voltage on A+ & A- Fully clockwise has maximum effect. Thus using this POT we can get intermediate percentage variation of the full scale - 10% at ± 5VDC.

6. O/L: Over Load Protection.

Over load protection provides protection to generator against overloading. It is based on field current when field current increase above set

value (which is set using O/L POT), internal timer starts and if overloading condition continues for 20 seconds then after 20 seconds AVR cuts off field voltage and generator voltage is shut off. O/L LED continues to light indicating O/L Trip. Adjustable from 0.1Amp to 7Amp DC. When O/L POT is fully anticlockwise is minimum setting and fully clockwise is maximum. Internal delay timer is fixed and delay time is 20 seconds ±1%

OPERATIONAL TEST

To operationally test any EVC300i, refer to Figure 5 and perform the following steps:

- a. Connect the voltage regulator as shown in Figure 5 and apply 230 Vac 50 Hz.
- b. Adjust the rear panel **VOLT** trimmer fully clockwise (CW).

RESULT: Observe that the lamp lights up full.

c. Adjust the rear panel **VOLT** trimmer fully counter-clockwise (CCW).

RESULT: Observe that the lamp is not lit.

d. Adjust the rear panel **VOLT** trimmer until the lamp just goes out.

Regulator operation is satisfactory if the above results are obtained. Stability, however must be tested with the generator and regulator operating.

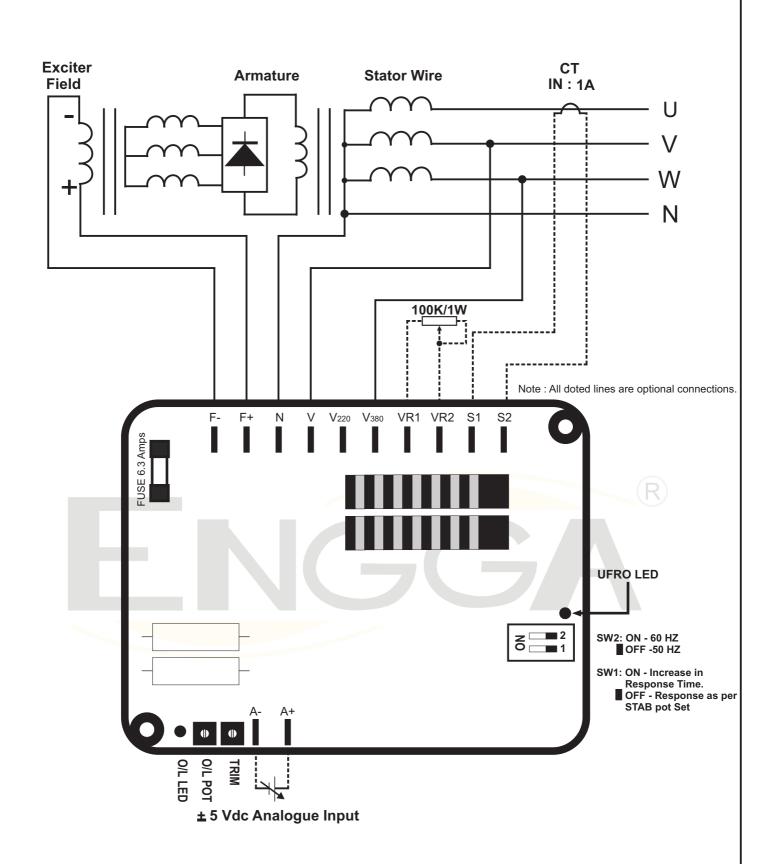


Figure 3. Connection Diagram for 400 Vac Operation

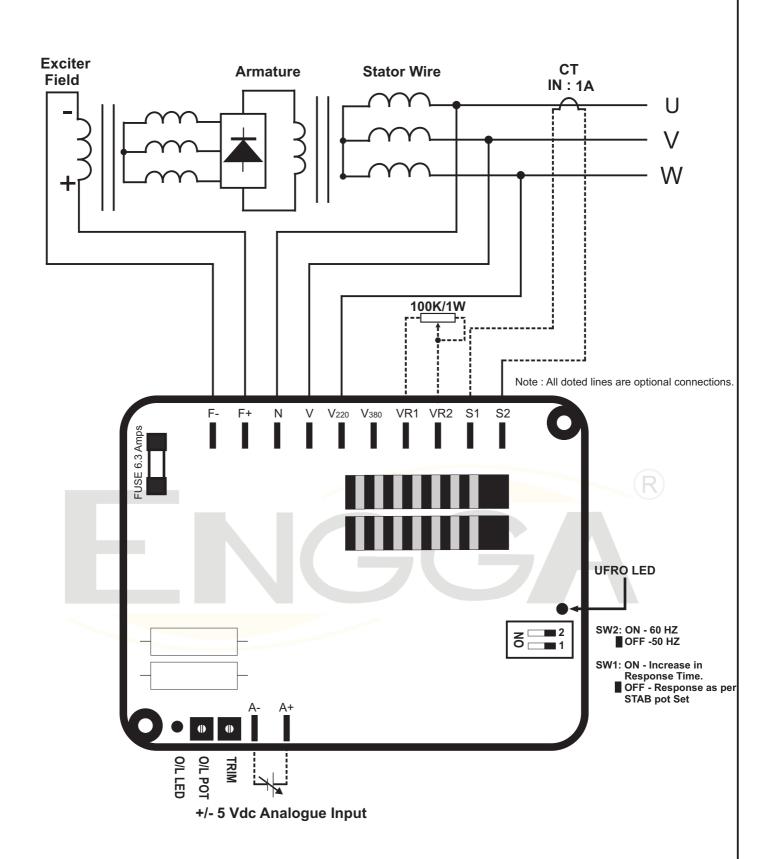


Figure 4. Connection Diagram for 200 Vac Operation

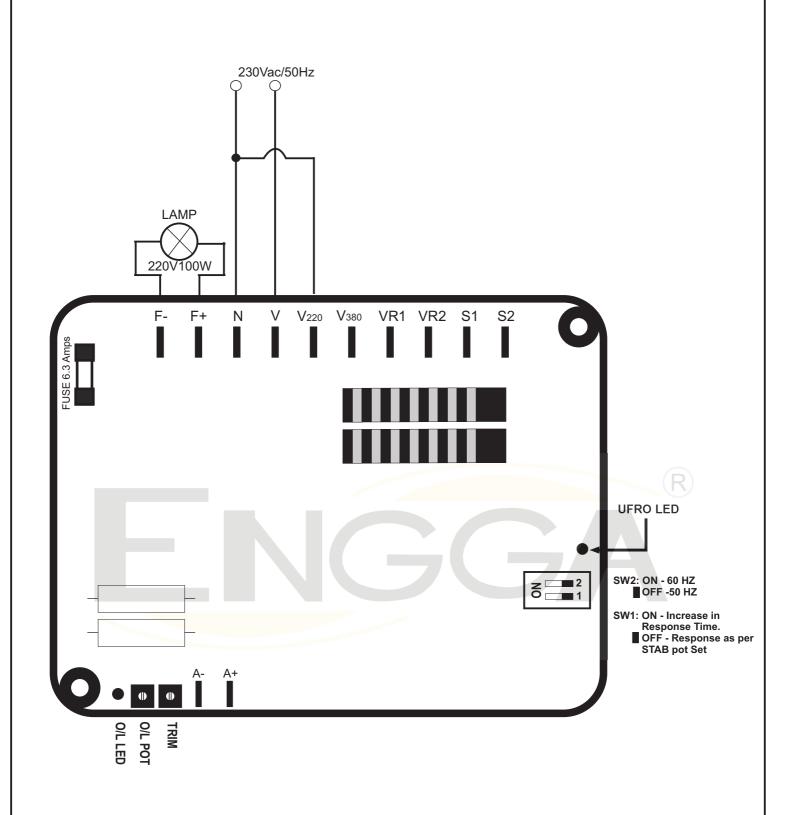


Figure 5. Operational Test

Updated on 02 Feb2015